PSEC-3 Analog Bandwidth

Eric Oberla
20 – April 2011
Quantifying BW

• Previous BW measurement 250-300 MHz (-3dB):

Qualitative observation of attenuation along input line
- function of input frequency?
- can we quantify?

New data: 300 readouts of sine waves at each frequency (50 MHz-2GHz)
Analysis

- Overlay sine data from same cells
- Histogram specified range of cells
- Get amplitudes from peaks of histogram

Example (400MHz):

Sine data over 256 cells -->

From histograms, amplitudes compared for 3 groups of cells:
- 1-5
- 61-65
- 141-145
More examples: (CW from top left 100MHz, 400 MHz, 1.2 GHz, 700MHz)
Bandwidth along input line:

Comments:
- Bandwidth highly dependent on location along input line:
 - First 5 cells have -3dB ~1.3 GHz (excluding 800MHz region)
 - Need to take more data to confirm trend 600-900 MHz
 - Reducing input line resistance should increase BW for later cells
- -3dB of cells 61-65 and 141-145 (~300MHz) agrees with previous measurement
Bandwidth with gain=2 amplifier

Comments:
- On-board amplifier (channel 4) unstable with unity gain – works with gain=2
- -3dB BW ~700 MHz for first cells
Summary

• Take more data in 500-900MHz range
 – Perhaps ADC clock started running faster?
 – Or other issue?
 – Or robust?

• Can extract effect time constant along input line as a function of frequency
 – Get RC along line
 – We know we have high series R – bad
 – Useful for PSEC3-a input line design (basically reduce R as much as possible)

• Can we extend BW of first few cells to entire input line?
 – Intuitively, seems possible with careful design